Wednesday, February 6, 2013

Automatic number plate detection

ALPR stands for automatic license plate recognition. The process typically consists of:
  • Identifying potential license plate candidates from an image.
  • Ranking the potential plate candidates and selecting the most likely one.
  •  Identifying alphanumeric characters and converting them to text.

The hardest part of this process is reliably acquiring the plate candidate image with variables such as:
  • Lighting conditions.
  • Camera angle.
  • Image noise
  • Variations in the type of plates.
  • Distance to plate; and consequently, the size of the plate in the image

In this article, I'll be going through a gist that works for a few images. I'll cover the literature review in a followup article.

Please note that this implementation has been developed and tested with very few samples; overfitting will probably reduce it's effectiveness.

#! /usr/bin/env python
import cv2
import numpy as np
import pymeanshift as pms
from blobs.BlobResult import CBlobResult
from blobs.Blob import CBlob # Note: This must be imported in order to destroy blobs and use other methods
#############################################################################
# so, here is the main part of the program
if __name__ == '__main__':
import sys
import os
blob_overlay = True
file_name = "plates/license1.png"
if len(sys.argv) != 1:
file_name = sys.argv[1]
base_name = os.path.basename(file_name)
fname_prefix = ".".join(base_name.split(".")[:-1])
print fname_prefix
# Image load & conversion to cvmat
license_plate = cv2.imread(file_name, cv2.CV_LOAD_IMAGE_COLOR)
# Segment
segmented, labels, regions = pms.segment(license_plate, 3, 3, 50)
print "Segmentation results"
print "%s: %s" % ("labels", labels)
print "%s: %s" % ("regions", regions)
cv2.imwrite('%s_segmented.png' % fname_prefix, segmented)
license_plate = cv2.imread('%s_segmented.png' % fname_prefix, cv2.CV_LOAD_IMAGE_COLOR)
license_plate_size = (license_plate.shape[1], license_plate.shape[0])
license_plate_cvmat = cv2.cv.fromarray(license_plate)
license_plate_ipl = cv2.cv.CreateImage(license_plate_size, cv2.cv.IPL_DEPTH_8U, 3)
cv2.cv.SetData(
license_plate_ipl,
license_plate.tostring(),
license_plate.dtype.itemsize * 3 * license_plate.shape[1])
license_plate_white_ipl = cv2.cv.CreateImage(license_plate_size, cv2.cv.IPL_DEPTH_8U, 1)
cv2.cv.Set(license_plate_white_ipl, 255)
# Grayscale conversion
inverted_license_plate_grayscale_ipl = cv2.cv.CreateImage(
license_plate_size,
cv2.cv.IPL_DEPTH_8U, 1)
license_plate_grayscale_ipl = cv2.cv.CreateImage(
license_plate_size,
cv2.cv.IPL_DEPTH_8U, 1)
cv2.cv.CvtColor(
license_plate_cvmat,
license_plate_grayscale_ipl,
cv2.COLOR_RGB2GRAY);
license_plate_grayscale_np = np.asarray(license_plate_grayscale_ipl[:,:])
# We can also use cv.saveimage
# cv2.cv.SaveImage('license1_grayscale.png', license_plate_grayscale_ipl)
cv2.imwrite('%s_grayscale.png' % fname_prefix, license_plate_grayscale_np)
# Thresholding or binarization of images
(threshold_value, thresh_image) = cv2.threshold(
license_plate_grayscale_np,
128,
255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)
print "Thresholding complete. Partition value is %d" % threshold_value
cv2.imwrite('%s_threshold.png' % fname_prefix, thresh_image)
# Create a mask that will cover the entire image
mask = cv2.cv.CreateImage (license_plate_size, 8, 1)
cv2.cv.Set(mask, 1)
#if not blob_overlay:
# # Convert black-and-white version back into three-color representation
# cv2.cv.CvtColor(my_grayscale, frame_cvmat, cv2.COLOR_GRAY2RGB);
# Blob detection
thresh_image_ipl = cv2.cv.CreateImage(license_plate_size, cv2.cv.IPL_DEPTH_8U, 1)
cv2.cv.SetData(
thresh_image_ipl,
thresh_image.tostring(),
thresh_image.dtype.itemsize * 1 * thresh_image.shape[1])
cv2.cv.Not(thresh_image_ipl, inverted_license_plate_grayscale_ipl)
# Min blob size and Max blob size
min_blob_size = 100 # Blob must be 30 px by 30 px
max_blob_size = 10000
threshold = 100
# Plate area as % of image area:
max_plate_to_image_ratio = 0.3
min_plate_to_image_ratio = 0.01
image_area = license_plate_size[0] * license_plate_size[1]
# Mask - Blob extracted where mask is set to 1
# Third parameter is threshold value to apply prior to blob detection
# Boolean indicating whether we find moments
myblobs = CBlobResult(thresh_image_ipl, mask, threshold, True)
myblobs.filter_blobs(min_blob_size, max_blob_size)
blob_count = myblobs.GetNumBlobs()
print "Found %d blob[s] betweeen size %d and %d using threshold %d" % (
blob_count, min_blob_size, max_blob_size, threshold)
for i in range(blob_count):
my_enumerated_blob = myblobs.GetBlob(i)
# print "%d: Area = %d" % (i, my_enumerated_blob.Area())
my_enumerated_blob.FillBlob(
license_plate_grayscale_ipl,
#license_plate_ipl,
#cv2.cv.Scalar(255, 0, 0),
cv2.cv.CV_RGB(255, 0, 0),
0, 0)
my_enumerated_blob.FillBlob(
license_plate_white_ipl,
#license_plate_ipl,
#cv2.cv.Scalar(255, 0, 0),
cv2.cv.CV_RGB(255, 255, 255),
0, 0)
# we can now save the image
#annotated_image = np.asarray(license_plate_ipl[:,:])
blob_image = np.asarray(license_plate_grayscale_ipl[:,:])
cv2.imwrite("%s_blobs.png" % fname_prefix, blob_image)
blob_white_image = np.asarray(license_plate_white_ipl[:,:])
cv2.imwrite("%s_white_blobs.png" % fname_prefix, blob_white_image)
# Looking for a rectangle - Plates are rectangular
# Thresholding image, the find contours then approxPolyDP
(threshold_value, blob_threshold_image) = cv2.threshold(
blob_white_image,
128,
255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)
print "Thresholding complete. Partition value is %d" % threshold_value
cv2.imwrite('%s_blob_threshold.png' % fname_prefix, blob_threshold_image)
# Blur to reduce noise?
#blurred_plate = cv2.GaussianBlur(blob_threshold_image, (5,5), 0)
#blob_threshold_image = blurred_plate
# Erode then dilate to reduce noise
blob_threshold_image_invert = cv2.bitwise_not(blob_threshold_image)
cv2.imwrite("%s_pre_dilated_and_eroded.png" % fname_prefix, blob_threshold_image_invert)
eroded_white_blobs = cv2.erode(blob_threshold_image_invert, None, iterations=4);
cv2.imwrite("%s_eroded_image.png" % fname_prefix, eroded_white_blobs)
dilated_white_blobs = cv2.dilate(eroded_white_blobs, None, iterations=4);
cv2.imwrite("%s_dilated.png" % fname_prefix, dilated_white_blobs)
blob_threshold_image = cv2.bitwise_not(blob_threshold_image_invert)
cv2.imwrite("%s_dilated_and_eroded.png" % fname_prefix, blob_threshold_image)
blob_threshold_image_invert = cv2.bitwise_not(blob_threshold_image)
contours, hierarchy = cv2.findContours(
blob_threshold_image,
cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
#print "Contours: ", contours
# We now have contours. Approximate the polygon shapes
largest_rectangle_idx = 0
largest_rectangle_area = 0
rectangles = []
colours = ( (255,0,0), (0,255,0), (0,0,255), (255,255,0), (0,255,255))
for idx, contour in enumerate(contours):
print "Contour: %d" % idx
contour_area = cv2.contourArea(contour)
if float(contour_area / image_area) < min_plate_to_image_ratio:
print "Contour %d under threshold. Countour Area: %f" % (idx, contour_area)
continue
elif float(contour_area / image_area) > max_plate_to_image_ratio:
print "Contour %d over threshold. Countour Area: %f" % (idx, contour_area)
continue
approx = cv2.approxPolyDP(
contour,
0.02 * cv2.arcLength(contour, True),
True)
print "\n -"
print "%d. Countour Area: %f, Arclength: %f, Polygon %d colour:%s" % (idx,
contour_area,
cv2.arcLength(contour, True),
len(approx),
colours[idx%len(colours)])
minarea_rectangle = cv2.minAreaRect(contour)
minarea_box = cv2.cv.BoxPoints(minarea_rectangle)
print "> ", minarea_rectangle
print ">> ", minarea_box
centre, width_and_height, theta = minarea_rectangle
aspect_ratio = float(max(width_and_height) / min(width_and_height))
print " aspect ratio: %f for %s " % (aspect_ratio, width_and_height)
minarea_box = np.int0(minarea_box)
cv2.drawContours(license_plate, [minarea_box], 0, (255,0,255), 2)
cv2.drawContours(
license_plate,
[contours[idx]],
0,
colours[idx%len(colours)])
# Aspect ratio removal
if aspect_ratio < 3 or aspect_ratio > 5:
print " Aspect ratio bounds fails"
continue
# Rectangles have polygon shape 4
if len(approx) == 4:
# Select the largest rect
rectangles.append(contour)
if contour_area > largest_rectangle_area :
largest_rectangle_area = contour_area
largest_rectangle_idx = idx
print "Probable plate hit is %d" % largest_rectangle_idx
cv2.drawContours(
license_plate,
[contours[largest_rectangle_idx]],
0,
colours[0],
idx + 1)
cv2.imwrite("%s_contours_colored.png" % fname_prefix, license_plate)
# Create a mask for the detected plate
#hull = cv2.convexHull(contours[largest_rectangle_idx])
# This bounding rectangle does not consider rotation
license_plate = cv2.imread(file_name, cv2.CV_LOAD_IMAGE_COLOR)
bounding_rectangle = cv2.boundingRect(contours[largest_rectangle_idx])
b_rect_x, b_rect_y, b_rect_w, b_rect_h = bounding_rectangle
plate_rectangle = (b_rect_x, b_rect_y, b_rect_w, b_rect_h)
print "Plate rectangle is: ", plate_rectangle
cv2.rectangle(license_plate, (b_rect_x, b_rect_y), (b_rect_x + b_rect_w, b_rect_y + b_rect_h), (0, 255, 0), 2)
cv2.imwrite("%s_bounding_box.png" % fname_prefix, license_plate)
license_plate = cv2.imread(file_name, cv2.CV_LOAD_IMAGE_COLOR)
minarea_rectangle = cv2.minAreaRect(contours[largest_rectangle_idx])
minarea_box = cv2.cv.BoxPoints(minarea_rectangle)
minarea_box = np.int0(minarea_box)
cv2.drawContours(license_plate, [minarea_box], 0, (0,0,255), 2)
cv2.imwrite("%s_bounding_box_minarea.png" % fname_prefix, license_plate)
view raw alpr.py hosted with ❤ by GitHub

  1. Load an image using opencv and python (Line 33)
  2. Run mean shift segmentation (I haven't evaluated the effectiveness of this) and save the image.
  3. Use the segmented image as the camera image.
  4. Convert the camera image (defaults as a numpy array) into OpenCV Mat and an IPL image (CV2 can work with numpy arrays. Plain old cv requires an IPL or Mat object).
  5. Convert the camera image into grayscale.
  6. Conduct thresholding on the image (Line 76). This means that pixels that are above the threshold become white and below black. This process is also called binarization.
  7. Create a mask that will be used for blob extraction that covers the entire image; setting all the pixels to 1 means that the mask will be applied everywhere.
  8. Invert the binarized image. License plates are mostly white with a few characters in black. Inversion means that the plate becomes mostly black with a few white character strokes (Line 94).
  9. Blob detection parameters. We don't want very small or very large blobs.
  10. Do the actual blob detection (Line 115).
  11. Iterate over the grayscale image adding an RGB color << this is a bug
  12. Mark potential blobs as black in a white image (Line 131).
  13. Another threshold step << This is probably unnecessary.
  14. Dilation and erosion to clean up the image << probably unnecessary.
  15. Find contours over the black images.
  16. For each contour, try and estimate it's overall shape. triangle? rectangle? n-gon (Line 196)? after eliminating very small and very large contours.
  17. Draw a bounding box.
  18. Calculate an estimate of the aspect ratio. Plates have a W/H ratio of 1 to 5
  19. Off the cuff heuristic. Largest rectangle that has an acceptable aspect ratio and is a rectangle is probably a plate. This is not always true. You might much a window or a large rectangular object...
  20. For the selected plate candidate, draw a bounding rect
Here are the results:
Segmented image
Thresholded image
Grayscale conversion

Blobs on a white image
Effects of erosion on an image
Effects of dilation on an image

Plate candidates - from contours
Min area box over plate candidate
Bounding box over plate candidate
And here are more images from a few more tests in picassa:

3 comments:

  1. How did you install cvblob in python?

    ReplyDelete
  2. Respect and that i have a keen offer you: What Renovations Increase The Value Of A Home entire home renovations

    ReplyDelete